
MATH2048 Honours Linear Algebra II

Midterm Examination 1

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let V = M2×2(R). Define T : V → R by T (A) = A11 − A22 and U : P1(R) → V by

U(p) =

(
0 p(0)

−p(0) p(1)

)
.

(a) Find a basis β for N(T ) and a basis γ for R(U).

(b) Find the dimensions of N(T ), R(U), N(T ) ∩R(U) and N(T ) +R(U).

Proof.

(a) The nullspace of T , denoted N(T ), consists of all matrices A ∈ M2×2(R) such
that T (A) = 0, i.e., A11 = A22. A basis β for this space can be given by

β =

{(
1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)}
.

The range of U , denoted R(U), consists of all matrices in M2×2(R) of the form
U(p) for some p ∈ P1(R). It can be seen that it only depends on the values of
p(0) and p(1), and that these can be any real numbers. Therefore, a basis γ for
this space can be given by

γ =

{(
0 1
−1 0

)
,

(
0 0
0 1

)}
.

(b) i. The dimension of N(T ) is the number of vectors in a basis for N(T ), which
is 3.

ii. Similar, the dimension of R(U) is 2.

iii. Note that the sum N(T ) + R(U) includes e11 + e22, e12, e21, and e22.
This spans the entire space M2×2(R), and hence the dimension of the sum
dim(N(T ) +R(U)) = 4.

iv. Now, using the formula dim(N(T )∩R(U))+dim(N(T )+R(U)) = dim(N(T ))+
dim(R(U)), we can find the dimension of the intersection N(T ) ∩ R(U).
This gives us dim(N(T )∩R(U)) = dim(N(T )) + dim(R(U))− dim(N(T ) +
R(U)) = 3 + 2− 4 = 1.
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2. Consider the linear operator T defined by

T : M2×2(R)→M2×2(R)

A 7→ A− AT

Let β =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
be the standard ordered basis for

M2×2(R).

(a) Find an ordered basis γ1 for N(T ) and an ordered basis γ2 for R(T ). Show that
γ = γ1 ∪ γ2 is an ordered basis for M2×2(R).

(b) With the γ that you found in (a), find the matrices A = [T ]γ and B = [IM2×2(R)]
β
γ .

Represent [T ]β by A and B using change of coordinates (No need to do the
computation).

Proof.

(a) i. The null space of T , N(T ), consists of all matrices A ∈ M2×2(R) such that
T (A) = A − AT = 0, i.e., A = AT . These are the symmetric matrices. An
ordered basis γ1 for this space can be given by

γ1 =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
.

ii. The range of T , R(T ), consists of all matrices of the form T (A) = A − AT
for some A ∈ M2×2(R). These are the antisymmetric matrices. An ordered
basis γ2 for this space can be given by

γ2 =

{(
0 1
−1 0

)}
.

iii. The union of γ1 and γ2 is

γ = γ1 ∪ γ2 =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

(
0 1
−1 0

)}
This set of matrices spans M2×2(R) and is linearly independent, and so is
an ordered basis for M2×2(R).

(b) i. Since T sends symmetric matrices to the zero matrix and antisymmetric
matrices to twice themselves, we have

A = [T ]γ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

 .

ii. To find the matrix B = [IM2×2(R)]
β
γ , we note that the identity map sends

each basis vector to itself.

B = [IM2×2(R)]
β
γ =


1 0 0 0
0 1 0 1
0 1 0 −1
0 0 1 0

 .

iii. Given the matrices A and B, we can represent the matrix of the transfor-
mation T in the β basis, [T ]β, as

[T ]β = BAB−1.
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3. Consider the linear transformation

T : P (R)→ P (R)

p(x) 7→ p(x+ 1)

Note that P (R) =
⋃∞
n=0 Pn(R). Let T |Pn(R) : Pn(R)→ Pn(R) be the restriction of T

on Pn(R). Let βn be the standard ordered basis for Pn(R) for non-negative integer n.

(a) Prove that T (βn) is a basis for Pn(R), that is T |Pn(R) is onto. Deduce that T is
onto. (Hint: The Binomial Theorem (x+ y)n =

∑n
j=0

(
n
j

)
xjyn−j.)

(b) Use (a) to show that T |Pn(R) is one-to-one. Deduce that T is one-to-one.

Proof.

(a) To prove that T (βn) is a basis for Pn(R), we first note that the standard ordered
basis for Pn(R) is βn = {1, x, x2, ..., xn}.
Under the linear transformation T , each basis vector xi is mapped to (x + 1)i.
Therefore, T (βn) is given by {1, (x+ 1), (x+ 1)2, ..., (x+ 1)n}.
Next, we consider the matrix representation of T with respect to the basis βn,
denoted as [T ]βn . The i-th column of [T ]βn is the coordinates of T (xi) with
respect to βn.

Using the Binomial theorem, the i-th column of [T ]βn can be written as a vector
whose j-th entry is

(
i
j

)
, for j = 0, ..., i, and is 0 for j = i + 1, ..., n. Therefore,

[T ]βn is an upper triangular matrix with 1s on the diagonal, which means it is
invertible.

Since the transformation matrix is invertible, it means that the columns of the
matrix, which correspond to the images of the basis vectors under T , are linearly
independent. Therefore, T (βn) forms a basis for Pn(R).

Finally, since P (R) =
⋃∞
n=0 Pn(R), and T |Pn(R) is onto for each n, T is onto on

P (R).

(b) Note that T |Pn(R) is a surjective linear map from a finite dimensional space to
itself, therefore T |Pn(R) is one-to-one.

[Another approach: To show that T |Pn(R) is one-to-one, we need to show that
if T (p(x)) = T (q(x)), then p(x) = q(x). Suppose T (p(x)) = T (q(x)), then
p(x + 1) = q(x + 1). This means that the polynomials p(x) and q(x) are equal
for all x ∈ R, and thus p(x) = q(x).]

Then, T |Pn(R) is one-to-one. For p, q ∈ P (R). Suppose T (p) = T (q). Note that
there is some n such that p, q ∈ Pn(R), and T |Pn(R) is one-to-one. Then p = q.
Therefore, T is one-to-one on P (R).

�

4. Let C∞(R) be the vector space of all smooth real functions (infinitely differentiable)
over R. Let V be the subspace of C∞(R) defined by:

V = {f ∈ C∞(R) : f(0) = f ′(0) = ... = f (n)(0) = 0},

where f (j) denotes the j-th derivative of f .

(a) Define Ψ : C∞(R) → Rn+1 by Ψ(f) = (f(0), f ′(0), ..., f (n)(0)). Show that Ψ is
onto.



(b) Define Ψ̃ : C∞(R)/V → Rn+1 by Ψ̃(f + V ) = Ψ(f). Use (a) to show that Ψ̃ is
an isomorphism, i.e. well-defined, linear and bijective.

Proof.

(a) We need to show that Ψ is onto, which means that for every element (r0, r1, ..., rn) ∈
Rn+1, there is some f ∈ C∞(R) such that Ψ(f) = (r0, r1, ..., rn). Consider the
function f(x) = r0 + r1x+ r2

x2

2
+ . . .+ rn

xn

n!
. Then, for each j ∈ {0, 1, ..., n}, we

have f (j)(0) = rj, and so Ψ(f) = (r0, r1, ..., rn). Thus, Ψ is onto.

(b) To show that Ψ̃ is an isomorphism, we need to prove it is well-defined, linear,
and bijective:

i. Well-defined: If f + V = g + V for some f, g ∈ C∞(R), then f − g ∈ V ,
so f(0) = g(0), f ′(0) = g′(0), ..., f (n)(0) = g(n)(0). Hence, Ψ(f) = Ψ(g), so
Ψ̃(f + V ) = Ψ̃(g + V ), and Ψ̃ is well-defined.

ii. Linearity: This follows immediately from the linearity of Ψ and the def-
inition of vector addition and scalar multiplication in the quotient space
C∞(R)/V .

iii. Bijectivity: By definition, the kernel of Ψ̃ is V , so Ψ̃ is injective. And since
we’ve shown in part (a) that Ψ is onto, so too is Ψ̃. Hence, Ψ̃ is bijective.
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5. Let U be a non-zero subspace of an infinite dimensional vector space V over F . Let
L ⊂ U be a basis of U . Using Zorn’s lemma, show that L can be extended to a basis
of V . Deduce that there exists a subspace W of V such that V = U ⊕W . Please
explain your answer with all the details.

Proof. Let U be a non-zero subspace of an infinite dimensional vector space V over
a field F . Let L ⊂ U be a basis for U .

We aim to show that L can be extended to a basis of V using Zorn’s lemma. To do
so, consider the set S of all linearly independent subsets of V that contain L. This
set S is non-empty since it contains L, and it is partially ordered by inclusion.

Given a chain C in S (a totally ordered subset of S), we can show that it has an
upper bound in S. Take L′ =

⋃
C. As each set in C is linearly independent and

each set in the chain contains L, L′ is linearly independent and contains L, so L′ ∈ S.
Therefore, L′ is an upper bound for the chain C in S.

By Zorn’s lemma, S has a maximal element, say B. If B is not a basis for V , then it
must not span V . There exists a vector v ∈ V not in the span of B. Add v to B, to
get a larger linearly independent set contradicting the maximality of B. Hence, B is
a basis for V .

Finally, let W = B \ L. Then W is a subspace of V that is disjoint from U (since L
is a basis for U), and V = U ⊕W . This is because any vector v ∈ V can be written
uniquely as v = u+w for some u ∈ U and w ∈ W . Here, the uniqueness follows from
the fact that B = L ∪W is a basis for V . �


